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41 The Holy Grail of Arithmetic: Bridging Provability and Cc
See also this update.

(Notations, non-standard concepts, and definitions used commonly ir.
are detailed in this post.)

Peter Wegner and Dina Goldin

In a short opinion paper, ‘Computation Beyond Turing Machines’, C
Peter Wegner and Dina Goldin (Wg03) advanced the thesis that:

"A paradigm shiftis necessary in our notion of computational
can provide a complete model for the services oftoday’s com
software agents.’

We note that Wegner and Goldin’s arguments, in support of their the
extraordinarily eclectic view of mathematics, combining both an im
and implicit frustration at, the standard interpretations and dogmas ¢
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The case against non-standard
models of PA I

The Holy Grail of Arithmetic:
Bridging Provability
and Computability

PA is finitarily consistent: A solution
to the Second of Hilbert's Twenty
Three Problems

mathematical theory:

(i) ... Turing machines are inappropriate as a universal found
problem solving, and ... computer science is a fundamentally
discipline.’

(i) "(Turing’s) 1936 paper ... proved that mathematics could n
modeled by computers.’

(iii) "... the Church-Turing Thesis ... equated logic, lambda cal
machines, and algorithmic computing as equivalent mechanis
solving.’

(iv) "Turing implied in his 1936 paper that Turing machines ...
model for all forms of mathematics.’

(V) ... Godel had shown in 1931 that logic cannot model matt
showed that neither logic nor algorithms can completely mode
human thought.’

These remarks vividly illustrate the dilemma with which notonly The
Sciences, but all applied sciences that depend on mathematics—fo
language to express their observations precisely—are faced:

Query: Are formal classical theories essentially unable to ade
extent and range of human cognition, or does the problem lie
theories are classically interpreted at the moment?

The former addresses the question of whether there are absolute lir
express human cognition unambiguously; the latter, whether there ¢
limits—not necessarily absolute—to the capacity of classical interpr
communicate unambiguously that which we intended to capture witl
expression.

Prima facie, applied science continues, perforce, to interpret mathel
Platonically, whilst waiting for mathematics to provide suitable, and
answers as to how best it may faithfully express its observations ve

Lance Fortnow

This dilemma is also reflected in Computer Scientist Lance Fortnow
Wegner and Goldin’s thesis, and of their reasoning.

Thus Fortnow divides his faith between the standard interpretations
mathematics (and, possibly, the standard set-theoretical models of
as standard Peano Arithmetic), and the classical computational the«
machines.

He relies on the former to provide all the proofs that matter:

"Not every mathematical statement has a logical proof, butlog
everything we can prove in mathematics, which is really whatr

and, on the latter to take care of all essential, non-provable, truth:
"... whatwe can compute is what computer science is all abour

Can faith alone suffice?
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However, as we shall argue in a subsequent post, Fortnow’s faith ir
Turing Thesis that ensures:

"... Turing machines capture everything we can compute’,

may be as misplaced as his faith in the infallibility of standard interp
mathematics.

The reason: There are, prima facie, reasonably strong arguments fo
paradigm shift; not, as Wegner and Goldin believe, in the notion of «
problem solving, butin the standard interpretations of classical mat

However, Wegner and Goldin could be rightin arguing that the direc
must be towards the incorporation of non-algorithmic effective metf
mathematical theory (as detailed in the Birmingham paper); presum
remarks, that this is, indeed, what "external interactions’ are assum:
classical Turing-computability:

(vi) "... that Turing machine models could completely describe
computation ... contradicted Turing’s assertion that Turing ma
formalize algorithmic problem solving ... and became a dogmr
theory of computation’.

(vii) "... interaction between the program and the world (enviro
during the computation plays a key role that cannot be replace
determined prior to the computation’.

(viii) "... atheory of concurrency and interaction requires a new
framework, notjust a refinement of what we find natural for sec
computing’.

(ix) "... the assumption that all of computation can be algorithn
widely accepted’.

A widespread notion of particular interest, which seems to be recurr
Wegner and Goldin’s assertions too, is that mathematics is a dispe
science, rather than its indispensable mother tongue.

Elliott Mendelson

However, the roots of such beliefs may also lie in ambiguities, in th
offoundational elements, that allow the introduction of non-constru
verifiable, non-computational, ambiguous, and essentially Platonic
standard interpretations of classical mathematics.

Forinstance, in a 1990 philosophical reflection, Elliott Mendelson’s
Me90; reproduced from Selmer Bringsjord (Br93)), implicitly imply t
definitions of various foundational elements can be argued as beiny
non-constructive, or both:

"Here is the main conclusion I wish to draw: itis completely ur
CTis unprovable just because it states an equivalence betwee
notion (effectively computable function) and a precise mathem
recursive function). ... The concepts and assumptions that suy
partial-recursive function are, in an essential way, no less vag
the notion of effectively computable function; the former are jus
are partof a respectable theory with connections to other parts
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mathematics. (The notion of effectively computable function cc
incorporated into an axiomatic presentation of classical mathe
acceptance of CT made this unnecessary.) ... Functions are dt
butthe conceptofsetis no clearer than that of function and a fi
mathematics can be based on a theory using function as prim
set. Tarski’s definition of truth is formulated in set-theoretic ten
setis no clearer than that of truth. The model-theoretic definitic
based ultimately on settheory, the foundations of which are nq
intuitive understanding of logical validity. ... The notion of Turir
function is no clearer than, nor more mathematically useful (fo
than, the notion of an effectively computable function.’

Consequently, standard interpretations of classical theory may, ina
weakening a desirable perception—of mathematics as the lingua fre
expression—by ignoring the possibility that, since mathematics is,

accepted as the language that most effectively expresses and comn
truth, the chasm between formal truth and provability must, of neces

Cristian Calude, Elena Calude and Solomon Marcus

The beliefin the existence of such a bridge is occasionally implicit ir
computational theory.

Forinstance, in an arXived paper Passages of Proof, Computer Scie
Elena Calude and Solomon Marcus remark that:

“Classically, there are two equivalent ways to look at the math
proof: logical, as a finite sequence of sentences strictly obeyir
inference rules, and computational, as a specific type of comp
proofgiven as a sequence of sentences one can easily const
producing that sequence as the result of some finite computat
given a machine computing a proofwe can just print all senter
the computation and arrange them into a sequence.”

In other words, the authors seem to hold that Turing-computability
of an arithmetical proposition, is equivalentto provability of its repre

Wilfrid Sieg

We now attemptto build such a bridge formally, which is essentially
arithmetical ‘Decidability and Calculability’ described by Philosophe
depth and wide-ranging survey ‘On Comptability‘, in which he addre
belief that an iff bridge between the two concepts is ‘impossible’ for
predicates’ (Wi08, p.602).

42 Bridging provability and computability: The foundation:

In the paper titled “Evidence-Based Interpretations of 7 4” that was
Symposium on Computational Philosophy at the AISB/IACAP Worlc
Turing 2012, held from g7 to fth July 2012 at the University of Birm
(reproduced in this post) we have defined what it means for a numb:
be:

(i) Algorithmically verifiable;

(if) Algorithmically computable.
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We have shown there that:

(i) The standard interpretation I_.-,A[N: Standard) O the firstord
PAis finitarily sound if, and only if, Aristotle’s particularisation
latter is the case if, and only if, PA is w-consistent.

(i) We can define a finitarily sound algorithmic interpretation Z
PA over the domain i where, if[.4] is an atomic formula [A{x
then the sequence of natural numbers {a, , @, ..., a, ) satisfie
[Alay,az,...,a,)]is algorithmically computable under Zp ;5
do not presume that Aristotle’s particularisation is valid over j

(i) The axioms of PA are always true under the finitary interpre
I_.-,A[N: Algorithmic) @nd the rules ofinference of PA preserve
satisfaction/truth under I_.-,A[N: Algorithmic)

We concluded that:
Theorem 1: The interpretation I,-.A[N: Algorithmic) Of PAS fi
Theorem 2: PAis consistent.

43 Extending Buss’ Bounded Arithmetic

One of the more significant consequences of the Birmingham pape
the iff bridge between the domain of provability and that of computal
Buss’ Bounded Arithmetic by showing that an arithmetical formula [
and only if, [ F] interprets as true under an algorithmic interpretation

4 A Provability Theorem for PA

We first show that PA can have no non-standard model (for a distine
this convention-challenging thesis see this postand this paper), sir
“algorithmically’ complete in the sense that:

Theorem 3: (Provability Theorem for PA) A PA formula [ F{z ]
only if, [F'{z]] is algorithmically computable as always true in ,

Proof: We have by definition that [{¥z ) F'(x]] interprets as true
interpretation I p 4. argorithmic) i @nd only if, [F(z]] is algo
as always true in }y.

Since I,-.A[N: Argorithmic) 1S finitarily sound, it defines a finitar
—say M p 4 3—such that:

If[{%¥z)F(x]] is PA-provable, then [F{z]] is algorithmical
always true in }y;

If[={¥z)F{xz]] is PA-provable, then itis notthe case that
algorithmically computable as always true in }y.

Now, we cannot have that both [{¥x ) F{z)] and [—{¥z)F(z)] a
some PAformula[F{z}], as this would yield the contradiction:

(i) There is a finitary model—say M1 s—of PA+{¥x ) F(x
algorithmically computable as always true in }y.
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(ii) There is a finitary model—say M2 s—of PAH =¥z ) F
the case that[F'(x)] is algorithmically computable as alw

The lemma follows. []
55 The holy grail of arithmetic
We thus have that:

Corollary 1: PA is categorical finitarily.
Now we note that:

Lemma 2: If PA has a sound interpretation I,-.A[N: Sound) OV
PA formula [#] which is algorithmically verifiable as always tru
Tpain. Souna)€Ven though[F]is not PA-provable.

Proof In his seminal 1931 paper on formally undecidable arit
Kurt Godel has shown how to construct an arithmetical formul

—say [R{zx)] [_such that[R{z)] is not PA-provable 21, but [
PA-provable for any given PA numeral [n]. Hence, for any give
formula z B[[R{n)]|musthold for some x. The lemma follow:

By the argumentin Theorem 3 it follows that:
Corollary 2: The PA formula [—({¥x ) f{x | defined in Lemma

Corollary 3: Under any sound interpretation of PA, Gddel’s [
algorithmically verifiable, but not algorithmically computable, t

Proof Godel has shown that| f{x]] [3]interprets as an algorit

tautology [4. By Corollary 2 [Riz)]is notalgorithmically comp
in N.[

Corollary 4: PAis notw-consistent. [5]

Proof Godel has shown thatif PA is consistent, then [ R{n]] is

given PA numeral [r] [6] By Corollary 2 and the definition of w-
consistentthen itis notw-consistent. []

Corollary 5: The standard interpretation I,-.A[N: Standard) Of
sound, and does notyield a finitary model of PA (71,

Proof If PAis consistent but notw-consistent, then Aristotle’s
nothold over jy. Since the ‘standard’, interpretation of PA app
particularisation, the lemma follows.[]

Since formal quantification is currently interpreted in classical Iogic[
Aristotle’s particularisation over  as axiomatic [91 the above sugc

to review number-theoretic arguments [10] that appeal unrestrictedly
Aristotlean logic.

46 The Provability Theorem for PA and Bounded Arithmeti

Ina 1997 paper [11] Samuel R. Buss considered Bounded Arithmet
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(a) limiting the applicability of the Induction Axiom Schema in F
with quantifiers bounded by an unspecified natural number bo1

(b) "'weakening’ the statement of the axiom with the aim of diffe
effective computability over the sequence of natural numbers,

‘polynomial-time’ computability over a bounded sequence of-
[12]

Presumably Buss’ intent—as expressed below—is to build an iff bri
provability in a Bounded Arithmetic and Computability so that a IT, f
, iIs provable in the Bounded Arithmetic if, and only if, there is an alg
given numeral [r], decides the A ;1) formula| fin)] as “true

If[{%¥z){Jy) fiz, y)] is provable, then there should be an algor
function of z (131,

Since we have proven such a Provability Theorem for PA in the prev
question arises:

47 Does the introduction of bounded quantifiers yield any
advantage?

Now, one difference [14] hetween a Bounded Arithmetic and PA is th
the Bounded Arithmetic that, from a proof of [{Jy] f (n, y]], we may ¢
there is some numeral [#2] such that| f{n, m]] is provable in the arit
is not a finitarily sound conclusion in PA.

Reason: Since [{3y) f (n, y)] is simply a shorthand for [-{%¥y)—f {n,
presumption implies that Aristotle’s particularisation holds over the
under any finitarily sound interpretation of PA.

To see that (as Brouwer steadfastly held) this may not always be the
(W) flx)] as IO

There is an algorithm that decides [ f{n)] as "true’ for any giver
In such case, if[{¥z){3y) f{x, y)] is provable in PA, then we can on

There is an algorithm that, for any given numeral [r], decides t
that there is an algorithm that, for any given numeral [, decic
‘true’.

We cannot, however, conclude—as we can in a Bounded Arithmetic

There is an algorithm that, for any given numeral [r], decides t
algorithm that, for some numeral [], decides [ f(n, m)] as "tr

Reason:[{dy) f (n, y]| may be a Halting-type formula for some num

This could be the case if [{¥x {dy) f(x, y)] were PA-unprovable, bu
provable for any given numeral [n].

Presumably itis the belief that any finitarily sound interpretation of P
particularisation to hold in 7, and the recognition that the latter doe:
provability to computability in PA, which has led to considering the €
quantification in PA.
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However, as we have seen in the preceding sections, we are able t
computability through the Provability Theorem for PA by recognising
contrary, any interpretation of PA which requires Aristotle’s particula
cannot be finitarily sound!

The postulation of an unspecified bound in a Bounded Arithmetic in
provability-computability link thus appears dispensible.

The question then arises:

48 Does "weakening’ the PA Induction Axiom Schema yield
advantage?

Now, Buss considers a bounded arithmetic &5 which is, essentially
‘weakened’ Induction Axiom Schema, PIND [161:

[{10) & (Fx)(f([5]) = fl2))} — (o) flz)]
However, PIND can be expressed in first-order Peano Arithmetic P#£
[({F(0) & (Ya)(flz) = (F(2+x) & f(2%2+1)))} = (va)
Moreover, the above is a particular case of PIND(k):

F(0) & (Vo) (flz) = (flkxx) & flhrz+1) & .. &
— (W) fz)]

Now we have the PA theorem:
[(Vz) flz) — {F(0) & (Y2)(flz) = flz+1))}]
It follows that the following is also a PA theorem:

({F(0) & (va)(flz) = fle+1))} =
{F00) & (Wa)(flz) = (flhwa) & flkez+1) & ... & f

In other words, for any numeral [F.,] PIND(f) is equivalentin PA to th
Axiom of PA!

Thus, the Provability Theorem for PA suggests that all arguments al
Bounded Arithmetic can be reflected in PA without any loss of gener
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Return to 1: Godel refers to this formula only by its G6del number r

Return to 2: Godel's immediate aim in Go31 was to show that[{¥z,
provable; by Generalisation itfollows, however, that[R{z]]is also 1

Return to 3: Godel refers to this formula only by its G6del number r

Returnto 4: Go31, p.26(2): “{n)—{nB, (17en r))holds”.
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Return to 5: This conclusion is contrary to accepted dogma. See, fo
remarks in Da82, p.129(iii) that:

“... there is no equivocation. Either an adequate arithmetical logic is
which case itis possible to prove false statements within it) or it has
decision problem and is subject to the limitations of Godel's incom

Returnto 6: Go31, p.26(2).

Return to 7: I note that finitists of all hues—ranging from Brouwer Br
Yessenin-Volpin He04—have persistently questioned the finitary sc
‘standard’ interpretation I_.-,A[N: Standard)-

Return to 8: See Hi25, p.382; HA28, p.48; Beb9, pp.178 \& 218.

Return to 9:In the sense of being intuitively obvious. See, for instan
Rg87, p.308 (1)-(4); EC89, p.174 (4); BBJO3, p.102.

Return to 10: For instance Rosser’s construction of an undecidable
proposition in PA (see Ro36)—which does not explicitly assume th
—implicitly presumes that Aristotle’s particularisation holds over

Returnto 11: Bu97.

Return to 12: See also Pa71.

Return to 13: See Bu97.

Return to 14: We suspectthe only one.

Return to 15: We have seen in the earlier sections that such an inter
sound.

Return to 16: Where | | denotes the largest natural number lower b
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